# SAMPLE SIZE CALCULATOR

An easy and precise sample size calculator to estimate how many respondents you will need to state your results with certainty.

## Easily Calculate Sample Size with this Tool

### Sample Size Calculator

Sample Size Calculator Guide

**Provide the population size for the target population that your survey results will be representing**

This is not your sample size but the entire population size you want to represent. Examples would be:

- The state of California (39.51 million)
- Pacific Gas & Electic (PG&E) Customers (16 million)
- Active members of the California Bar Association (190 thousand)

*Enter your target population size.*

**The margin of error represents how precise your results will be**

The margin of error represents the ** difference of proportion from the true proportion** that is acceptable to the researcher.

In the social sciences, 5 percent is an acceptable margin of error. You can change the margin of error depending on your precision needs. If you have no preference, choose a 5 percent default.

*Sample size increases as the margin of error decreases.*

Trying to figure out how sample size affects the margin of error? Use our margin of error calculator

**Select the reliability level**

In statistics, this a measure of the reliability of a result and should not be confused with the *confidence interval*.

A confidence level of 95 percent means there is a probability of at least 95 percent the result accurately represents the population.

*Increasing the confidence level will increase the sample size.*

**This is your estimated sample size based on the inputs provided**

The calculator uses a p-value of 0.50 which is the standard distribution or deviation recommend for most research where you don’t know the previous or actual deviation.

All other inputs are controllable with the calculator. However, 95% confidence levels and 5% margin of error are generally accepted settings for research.

Please refer to * best practices for sample size calculator* later in this article for how to calculate sample size and use sample size estimates.

## How to Calculate Sample Size for Your Survey

If you are searching for a sample size calculator you know the goal of a survey is to acquire conclusions from a representative sample of a target population. But one problem of designing a survey is figuring out just how many participants to include to have a sample that can truly represent the population. Statistics solves this problem, giving survey designers a clear-cut way of calculating the minimum sample needed for the survey to be “valid” in science’s eyes.

This method of calculating the required sample size for your survey is easy enough for even the first-time survey-creator or an experienced research expert to estimate probability sampling needs.

### Choose the alpha level and corresponding confidence level

The alpha level is the probability of rejecting the null hypothesis of the survey (usually that there is no difference between the groups you wish to investigate) assuming that the null hypothesis is actually true.

In most sciences, 0.05 is the standard alpha level. However, alpha levels 0.01 and 0.1 are not uncommon. If you do not know which alpha level to choose, set alpha = 0.05. The confidence level will be 100 minus the alpha value. If the alpha is 0.05 the confidence level is 0.95 or 95%.

### Choose the margin of error

The margin of error represents how precise your results will be. Technically, the margin of error represents the *difference of proportion from the true proportion* that is acceptable to the researcher. If you want the *difference of the absolute value* of the range, run a confidence interval test.

The margin of error also referred to as the confidence interval is often expressed as a range ± the population parameter σ. In the social sciences, 0.05 is an acceptable margin of error. You can change the margin of error depending on your precision needs. If you have no preference, choose e = 0.05 as the default.

Use our margin of error calculator to check to see if the sample size relative to the population size is within an acceptable parameter. Anything above five percent, you may want to increase your sample size.

### Estimate the standard deviation

If you have data from previous or similar studies about what you are currently researching than you can use the standard-deviation reported in that data. However, it is often the case that there is no prior research for your topic of interest. In this case, for the sake of being conservative, set the standard deviation, p = 0.5.

Please note if you are going to use a distribution value other than 0.5 you have the replace p^{2} with p(1-p) in the initial sample size calculator equation below.

### Find the z-score for the confidence level

You can find this value by using a t-table, which is available in most introductory statistics books. The bottom two rows include the most frequently used confidence levels, along with their z-scores.

Use the alpha value or the confidence level to look up the corresponding value while assuming the degrees of freedom value in the table is large (this way your estimate will still be conservative).

For example, you will find that for an alpha level of 0.05, the corresponding z-score in the table assuming a large degrees of freedom value is 1.96. So, z value = 1.96.

### Calculate the initial sample size estimate

Simply calculate N = ( z ^{ 2 }× p ^{ 2 } ) / e ^{ 2 }

### Calculate the final sample size estimate

Divide N by 1 + (N / population), where “population” is the size of the total population you are targeting.

## Best Practices for Using the Sample Calculator

Tools are great and like all tools, there are different tools for different jobs. This sample size calculator is best to use as a guide to get you started sampling. There are many straight forward sampling projects in which the sample calculator will provide excellent guidance to get you started in acquiring your sample or having a discussion with a market research panel provider.

Here are some best practices to consider when using this tool…

### Giving priority to your sample subgroups when calculating for the sample size

A classic example will be calculating a representative sample from the whole population of the United States at a size of approximately 330 million people.

*Using the 95 percent confidence level and considering a 5 percent margin of error*;

the calculator will yield an appropriate N=278 estimated sample size.

When you are looking to compare ethnic subgroups:

African Americans represent 15 percent of the U.S. population and would only yield N=42 respondents from a sample of N=278.

Therefore it is common for a U.S.population representative survey that is intended to be published to have a larger sample size of N=1000 or even N=2000.

An appropriate sample size base of greater than N=1000 would allow for statistically valid subgroup sizes for the African American, Hispanic, and Asian subgroups without having to weight the data.

### Re-calibrate sample size calculation when using stratification sampling and cluster sampling

Remember when you are using stratification sampling or cluster sampling methods you are potentially changing the target population size. In many cases, you may be dealing with very large population sizes to start with and after clustering, it is still large. So the impact on your sample size will not be significant.

However if by clustering or stratifying your sample population, the population size changes significantly up or down, this may impact your sample size. In cases where you are clustering, you can calculate sample size at the individual population clusters.

### Do all research projects require a random sample?

Many surveys you conduct may not require the precision that a random sample will provide. If you are collecting any of the following types of data:

- Feedback generated from a customer list or collected from a website offering
- Targeted people surveyed during a past tracking study who indicated usage of a specific brand or product
- Members of your club or membership association.

For any of the above sample frames, it would be important based on feasibility, to obtain as broad a representation of responses as possible. In these circumstances it is the feedback which is a priority and the level of precision for making a decision either may not be present or you have the complete set of respondents (meaning a list of the entire target population) to make a confident decision. Therefore you can either sample the entire population, or obtaining a truly random sample may not be required.

##

## Need help with your project?

#### We are ready to get to work for you by providing:

#### Our latest Panel Book, ESOMAR28 response

#### An open dialogue about your requirements

#### info@ovationmr.com

#### +1.212.653.8750

#### A project estimate/proposal

#### 39 Broadway, Suite 2010, New York, NY 10006 USA

#### M-F: 8am-5pm, S-S: Closed

** Resources**

** Visit Us:**

39 Broadway

Suite 2010

New York, NY 10006

** Resources**

** Visit Us:**

- 39 Broadway
- Suite 2010
- New York, NY 10006